Base Oil and Wax production

Péter NÉGELI Senior Development Engineer MOL Downstream T&D Technology Process Development

Budapest University of Technology and Economics Leader in technical higher education

Lubricant Story

- 1400 BC, beef and mutton fat (tallow) being applied to lubricate chariot axles. Very little changed over the next 3000 years except, that the oils sometimes came from more exotic animals such as whales.
- In 1852 petroleum-based oils first became available. They were not widely accepted at first because they did not perform as well as many of the animal-based products. Raw crude did not make very good lubricant.
- But as the demand for automobiles grew, so did the demand for better lubricants.
- Lubricant manufacturers learned soon which crudes made the best lubricants.
- By 1923 the Society of Automotive Engineers classified engine oils by viscosity: light, medium, and heavy. Engine oils contained no additives and had to be replaced every 800-1000 miles.
- In the 1920s more lubrication manufacturers started "processing" their base oils to improve their performance.
- HC technologies were commercialized for lube poruction in late '50 and dewaxing was in ,'70

Lubes

- Automotive: engine oils, automatic transmission fluids (ATF's), gear-oils
- Industrial: machine oils, greases, electrical insulating oils, gas turbine oils
- Pharmacy/cosmetics: white oils, paraffinicum liqudicum
- Provisioning: food grade oils, lining of food containers, cover of food, etc.

Lube Refinery

- * Why beneficial to produce base stocks and waxes?
- ✤ What are the products and which properties are important?
- ✤ Which types of processes?
- ✤ Global market and changes

Refinery Outputs

ICIS

Refinery output = global demand

Demand & Consumtpion

Global Lubricant Consumption by Region

© 2013 Kline & Company

Prices

Feedstocks and product portfolio

MOL

Feedstocks: Vacuum distillates and residues

> Others: Side products, solvented distillates, dewaxed distillates, etc.

Product properties

Main quality prameters:

- > Viscosity
- Volatily (Noack)
- > Viscosity index (VI)
- Pour point: the temperature at which the fluid ceases to pour and is nearly a solid (typically the pour point ranges from -6 to -24°C for heavy to light neutrals)
- Cloud point: the temperature at which the first wax crystals appear
- > Saturates, aromatics, naphthenes content
- Color (change appearance in presence of light)
- Stability (change appearance in presence of heat)
- Melting point (waxes)

Base Oils API Groups

API Group	<u>% saturates</u>	<u>% sulfur</u>	<u>VI</u>		
I	< 90 % sats and/or	> 0.03% S	<u>></u> 80 and <120		
II	<u>></u> 90 % sats and	<u><</u> 0.03% S	<u>></u> 80 and <120		
III	<u>></u> 90 % sats and	<u><</u> 0.03% S	<u>></u> 120		
IV	Poly-alpha-olefins (PAO)				
V	Basestocks not included in Groups I – IV				
	Source: API 1509 Appendix E				

Feedstock composition

Effect of molecular types

Designation	Viscosity Index	Pour Point	Resistance to Oxidation	Value as Base Oil
<i>n</i> -paraffins	~ <i>~ ~ ~ ~</i>	~	\checkmark \checkmark \checkmark \checkmark	\checkmark \checkmark \checkmark
	~ <i>~ ~</i> ~	√ √ √	~ <i>~ ~ ~</i>	~ <i>~ ~ ~ ~</i>
Mono-naphthenes	√ √	√ √	√ √ √	√ √ √
Poly-naphthenes	√ √	√ √ √	√ √	Nil
Aromatics	~	√ √ √	~	Nil

Solvent processes

Main three process steps

- Crude distillation to Light-, Medium- and Heavy feed fractions
- Remove the unwanted aromatics solvent extraction
- Remove paraffins and waxes solvent dewaxing

Quality parameter controls

Where controlled Property

Crude distillation isolates heavy molecules Viscosity and creates primary viscosity grades

VI Solvent extraction (aromatics removal) (higher is + VI increases as aromatics are removed better) Saturates Solvent extraction (aromatics removal) + Saturates increase as aromatics are removed (higher is better)

Pour Point Solvent dewaxing (wax removal) (lower is + Pour point decreases as wax is removed better)

Light

Mid

Base Oil production in Danube Refinery

Molecules and processes

Process solvent and ratios

Solvent Dewaxing and Deoiling Solvents: **MEK, Toluene,** Acetone Typical solvent ratio (MEK-T): 1:3 - 1:5 t/t Solvent Composition: MEK 40-45%, T: 55-60%

Solvent Deasphalting Solvents: **Propane** to Heptane $C_3 - C_7$ Typical solvent ratio (C_3 case): 1:3,4-3,6 t/t

Solvent Treating (Aromatic removal) Solvents: Furfural, Phenol, NMP (N-methyl pyrolidone)

Typical solvent ratio (NMP case): 1:1,75-2,25 t/t

Process types and steps

Solvent processes

- Vacuum distillation
- Solvent Deasphalting
- Solvent Extraction
- Solvent Dewaxing
- Solvent Deoiling
- Hydrotreating
- Clay treating

Catalytic processes

- Vacuum distillation
- Base Oil Hydrocracking
- □ Cat. Dewaxing / Isodewaxing
- Hydrotreating

Base Oil Hydrocracking & Isodewaxing

- Catalytic Lube Hydrocracking & Catalytic Dewaxing

Group III production on HCU base

- Base case: VGO Hydrocracker unit (HCU) exists for Diesel production
- Unconverted Oil (HCU Residue) is applicable for Base Oil Production
- Only a Hydrodewaxing unit is needed, Lube Hydrocracker unit is not needed

Catalytic quality parameter controls

Group III⁺ production on GTL process

- Fischer-Tropsch process base
- F-T HCs products are a white waxy crude for upgrading -
- Group III⁺ quality Base Oils can be produced next to the fuels

Main GTL products

Typical API Group composition

Composition differences

poly-naphthenes

API Groups - What's better?

<u>Same Labels, New Perceptions</u> <u>Regarding What's "Better"?</u>

Lubricant market

 Transportation-related lubrication is largest market at around 60% of global applications

- Industrial / grease applications are ~ 30%
- Non-lubricating applications ("process oils") are ~ 10%

Sources: My Energy Databases, Fuchs Lubricants, Kline & Company

www.icis.com

Actual and Committed Global Nameplate Base Oil Capacity Additions and Expected Group I Closures, 2010 to 2020

Nearly 150 KB/D of Group I capacity could be decommissioned during this decade, and another 100-150 KB/D is "At Risk" from low margins/refinery shutdowns by 2030

Base Oil – Changes in global production

Changes in Base Oil Capacity by Group, 2000-2017 (KB/SD)

Changes in Base Oil Capacity by Visgrade, 2000-2017 (KB/SD)

Source: Kline

Base Oil Global Demands

Total ~ 55 MMT ~ 80% avg. global capacity utilization (supply ~ 44 MMT)

Thank you !

Thank You for Your Attention !

